Multiple imputation for interval censored data with auxiliary variables.
نویسندگان
چکیده
We propose a non-parametric multiple imputation scheme, NPMLE imputation, for the analysis of interval censored survival data. Features of the method are that it converts interval-censored data problems to complete data or right censored data problems to which many standard approaches can be used, and that measures of uncertainty are easily obtained. In addition to the event time of primary interest, there are frequently other auxiliary variables that are associated with the event time. For the goal of estimating the marginal survival distribution, these auxiliary variables may provide some additional information about the event time for the interval censored observations. We extend the imputation methods to incorporate information from auxiliary variables with potentially complex structures. To conduct the imputation, we use a working failure-time proportional hazards model to define an imputing risk set for each censored observation. The imputation schemes consist of using the data in the imputing risk sets to create an exact event time for each interval censored observation. In simulation studies we show that the use of multiple imputation methods can improve the efficiency of estimators and reduce the effect of missing visits when compared to simpler approaches. We apply the approach to cytomegalovirus shedding data from an AIDS clinical trial, in which CD4 count is the auxiliary variable.
منابع مشابه
Accuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملEstimation of colorectal adenoma recurrence with dependent censoring
BACKGROUND Due to early colonoscopy for some participants, interval-censored observations can be introduced into the data of a colorectal polyp prevention trial. The censoring could be dependent of risk of recurrence if the reasons of having early colonoscopy are associated with recurrence. This can complicate estimation of the recurrence rate. METHODS We propose to use midpoint imputation to...
متن کاملSurvival analysis using auxiliary variables via non-parametric multiple imputation.
We develop an approach, based on multiple imputation, that estimates the marginal survival distribution in survival analysis using auxiliary variables to recover information for censored observations. To conduct the imputation, we use two working survival models to define a nearest neighbour imputing risk set. One model is for the event times and the other for the censoring times. Based on the ...
متن کاملSurvival analysis using auxiliary variables via multiple imputation, with application to AIDS clinical trial data.
We develop an approach, based on multiple imputation, to using auxiliary variables to recover information from censored observations in survival analysis. We apply the approach to data from an AIDS clinical trial comparing ZDV and placebo, in which CD4 count is the time-dependent auxiliary variable. To facilitate imputation, a joint model is developed for the data, which includes a hierarchical...
متن کاملExploring the Method for Analyzing Interval Censored Data Using Imputation in Competing Risks Model
We consider the problem of analyzing interval censored data comparing cumulative incidence functions by demographic variables in the presence of competing risks. In this paper, we explore two methods based on imputation, the EM-type method and Multiple Imputation. Basically, we imputed the exact event time for interval censored data and take advantage of standard estimation methods for right ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2007